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Abstract 

The aim of this chapter is not just to present a selection of literature on early 

development in Down syndrome (DS), but to integrate findings from across 

disciplines within an overarching approach or framework. The approach we take is to 

view DS not as a collection of cognitive and motor deficits, nor as an assortment of 

relative strengths and weaknesses, but as a functioning adaptive system albeit with a 

different start state (trisomy 21). According to this view, the emerging characteristics 

of DS are adaptations to atypical constraints, and thus serve an immediate functional 

purpose – but these early adaptations will in turn act as new developmental 

constraints, and some of them may exacerbate the divergence of the DS trajectories. 

In this chapter, we focus on the first few years after birth, because to understand how 

the DS phenotype gradually emerges, it is important to focus on early developmental 

constraints. We start by introducing DS as an adaptive system with trisomy 21, and 

how a developmental systems approach is needed to understand it. We continue by 

explaining how such an approach can be implemented in research. We then describe 

how trisomy 21 may constrain neural plasticity, which is likely to have cascading 

effects on the developmental process of specialization – contributing to less efficient 

information processing and atypical motor activity. We then discuss how young 

children with DS may adapt to these challenges within the context of the social 

environment. Finally, we point to future directions in theory, research, and 

intervention. 

 

Keywords: Down syndrome, infancy, adaptive systems, developmental systems, 

neural plasticity, specialization, perception-action cycles, cognitive development, 

motor development, social development, intervention 
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“The study of Down’s syndrome has become a fractionated business, each discipline pressing 

exclusive views about mechanisms and management. The result has been a confusing array 

of books, pamphlets and technical articles about Down’s syndrome (close to 1000 published 

items to date on psychological matters alone) which mostly fail to enlighten.” 

(Gibson, 1978, p. xi)  

 

More than 40 years and over half a million academic papers and books later (Google 

Scholar), there seems to be an exponential tendency to review and meta-analyse findings in 

the Down syndrome (DS) field.1 There is also growing recognition that DS is a multilevel, 

multisystem, neurodevelopmental disorder which needs to be understood by collating 

empirical findings across disciplines and across the lifespan (e.g., D’Souza, D’Souza, et al., 

2017; D’Souza & Karmiloff-Smith, 2017). However, in order to understand these findings 

and move forward, it is necessary to cohere them into a single developmental story. 

 The aim of this chapter is not just to present a selection of the vast literature on DS, 

but to provide some clarity by integrating findings from across disciplines within an 

overarching approach or framework. The approach we take is to view DS not as a collection 

of cognitive and motor deficits, nor as an assortment of relative strengths and weaknesses, 

but as a functioning adaptive system albeit with a different start state (trisomy 21). According 

to this view, the emerging characteristics of DS are adaptations to atypical constraints, and 

thus serve a functional purpose – and constrain later emerging skills. We focus on the first 

few years after birth, because to understand how the DS phenotype gradually emerges, it is 

 
1 In the past few years alone, there have been many reviews and meta-analyses in the DS field on topics such 

as paediatric brain development (Hamner et al., 2018), functional magnetic resonance imaging (fMRI) (Carbó-
Carreté et al., 2020), the infant foundations of cognition (Fidler, Needham, et al., 2019), joint attention (Hahn 
et al., 2018), physical therapy (Ruiz-González et al., 2019), and memory (Godfrey & Lee, 2018), as well as a 
more general primer on DS (Antonarakis et al., 2020) and numerous reviews on neurobiological research and 
its implications for therapy (e.g., Lee et al., 2020; Stagni et al., 2018; Vacca et al., 2019; see also the collection 
edited by Dierssen, 2020). 
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important to focus on early developmental constraints (D’Souza & Karmiloff-Smith, 2016). 

We start by introducing DS as an adaptive system with trisomy 21, and how a developmental 

systems approach is needed to understand it. We continue by explaining how such an 

approach can be implemented in research. We then describe how trisomy 21 may constrain 

neural plasticity, which is likely to have cascading effects on the developmental process of 

specialization – contributing to less efficient information processing and atypical motor 

activity. We discuss how a young child may adapt to these challenges within their social 

environment. Finally, we point to future directions in theory, research, and intervention. 

 

1 Down syndrome: an adaptive system with a different start state 

Although the characteristics of DS vary across individuals in number and intensity (Dykens 

& Hodapp, 2001; Karmiloff-Smith et al., 2016), a widely accepted profile of DS has been 

described. In addition to general intellectual disability, the profile includes particular 

difficulties in motor ability, auditory processing, verbal short-term memory, and language 

ability (especially expressive language; e.g., Miller & Leddy, 1999); relative strengths in 

visuospatial processing and some aspects of social functioning (e.g., Cebula et al., 2010; 

Jarrold & Baddeley, 1997; Wishart & Johnston, 1990); and atypical motivation (Pitcairn & 

Wishart, 1994). However, most of what we know about this DS profile comes from studies of 

older children and adults. Yet, the DS profile only gradually emerges over developmental 

time (e.g., Fidler, 2005; Fidler et al., 2008; Will et al., 2018). Studying infants with DS 

therefore affords a window onto this process.  

Because DS is diagnosed by genetic testing, it is tempting to assume that the 

emergence of the DS phenotype—with its loose assemblage of relative strengths and 

weaknesses—is under the control of genetic activity (e.g., trisomy 21). However, there is 

now ample evidence that control is distributed among multiple, diverse, interconnected, and 
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interdependent factors, many of which are external to the individual (for discussion, see 

D’Souza, D’Souza, et al., 2017). Therefore, DS is not a static disorder with deficits and areas 

of relative strengths, but an adaptive system with a different start state. Adaptive systems 

comprise manifold interdependent parts, which develop and give rise to new structures and 

functions by actively adapting to their environment. Each adaptive system begins from a 

slightly different start state, has a separate set of experiences, and thus develops different 

behaviours. But the behaviour of these systems, including those with trisomy 21, are 

adaptations – developmental processes in which the system maximizes its fit to the 

environment under internal and external constraints (Johnson, 2017). Moreover, while 

internal/external factors (e.g., genes) influence developmental processes, developmental 

processes (e.g., neural reorganisation) constrain the factors (e.g., genetic expression). In other 

words, development is produced by interacting factors across various levels (Fig. 1). 

 

Figure 1. Illustration of cascading effects and the complexity of development across time (x-axis). 
Horizontal arrows = trajectories within a domain of functioning; diagonal arrows = causal pathways 
within levels of functioning; vertical arrows = effects between levels of functioning. Adapted from 
Moore & George (2015). Reproduced by permission of Taylor and Francis Group, LLC, a division of 
Informa plc. 
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Take language, for example. If language development were under the control of 

genetic activity and pre-programmed, then we would expect that damage to classic language 

areas in the brain would cause irrecoverable damage to the language system (see D’Souza & 

Karmiloff-Smith, 2011, 2016, for discussion). However, if control is distributed and language 

development is probabilistic, then we might expect that an adaptive system would have the 

flexibility to compensate for the injury. And, indeed, this is what seems to be the case; the 

literature is replete with examples of children with perinatal left-hemisphere brain damage 

who nevertheless acquire important age-appropriate language skills (e.g., Bates et al., 2001; 

see D’Souza & Karmiloff-Smith, 2016, for discussion). By the same token, in DS, language 

development has been shown to be a highly complex process that is contingent on multiple 

components, including nonverbal communication skills, motor skills, attentional abilities, 

face scanning, sleep, verbal short-term memory, visuospatial short-term memory, and family 

context (e.g., Chapman & Hesketh, 2001; D’Souza et al., 2015; D’Souza, D’Souza, Horváth, 

et al., 2020; D’Souza, D’Souza, Jones, et al., 2020; D’Souza, Lathan, Karmiloff-Smith, et al., 

2020; Deckers et al., 2019; Edgin et al., 2015; Martin et al., 2009; Mason-Apps et al., 2018; 

Mundy et al., 1995).  

The DS phenotype therefore seems to emerge through a cascade of interconnected 

and interdependent effects, which may reflect a more probabilistic than deterministic process 

(Gottlieb, 2007). According to this ‘developmental systems’2 perspective: 

(1) At conception, the organism ‘inherits’ a wide range of interacting resources 

(genes, chromatin marks, endosymbionts, nutrients, a family, society, etc. – the 

 
2 Like Ulrich (2010), we (e.g., D’Souza & D’Souza, 2019) use the phrase ‘developmental systems’ to refer to a 

cluster of (non-nativist) perspectives that share some (or all) of the core tenets of ‘developmental systems 
theory’ (Ford & Lerner, 1992; Oyama, 1985; Oyama et al., 2001) and that view neurocognitive and motor 
development as the emergent functions of a complex adaptive system constrained by an intricate web of 
interactions between manifold factors (Blumberg, 2017). These perspectives include connectionism (Bates et 
al., 1996; McClelland & Vallabha, 2009; Rosenblatt, 1958), dynamic systems theory (Thelen, 1992; Thelen & 
Smith, 1994), and neuroconstructivism (Westermann et al., 2007). 
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‘start state’), which affect, and are affected by, the infant’s development (Oyama, 

1985). 

(2) The infant learns and develops through the active process of adapting its internal 

connectivity to the metrics of the external world (Buzsáki, 2006). Action is 

therefore at the heart of learning and development. It is an interactive process 

through which the conditions of the external world are also altered.  

(3) Neurocognitive and motor processes are not the sole products of our genes, but 

emerge through self-organized interactions among multiple factors (e.g., between 

the child and physical environment) across various levels (e.g., genes, brain, 

family, society) (Gottlieb, 1992; Lerner, 1978; also see Fig. 1). 

(4) Development is progressive; structures and systems that emerge at one point in 

time may constrain later-emerging structures and systems (Gottlieb, 1970, 2001). 

Hence, it is important to study constraints and adaptations early in development in 

order to understand later developmental processes.    

(5) Because development involves the interaction of diverse, interdependent factors 

over multiple timescales, it can be nonlinear (Buzsáki, 2004; McClelland & 

Vallabha, 2009; Rosenblatt, 1958; Schöner & Kelso, 1988). That is, small 

perturbations may result in large cascading effects, and large perturbations may 

have little or no effect on the developing system.  

In other words, development is constrained (i.e., context-dependent and time-

sensitive) and involves an active process of adapting to typical and atypical constraints. An 

understanding of how the DS phenotype emerges, therefore, necessitates an understanding of 

how the system adapts to constraints across time, and especially to constraints in early 

development, as these early adaptations may constrain the emergence of later adaptations.  
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2 How to implement a developmental systems approach to study infants with DS  

Although the principles of developmental systems are widely acknowledged, they are not 

often reflected in our current research practices. This is not surprising given the complexity 

of human development. How might we go about implementing a developmental systems 

approach in our research practice? On the practical side, we need to collect large datasets and 

use advanced analytical techniques to reveal the patterns concealed within (big data). This 

requires time, resources, and the opportunity to test many participants many times and over 

many timescales (from moment-to-moment to longitudinally). But big data is not sufficient. 

Identifying patterns, trends, and associations is an important step, but it does not elucidate 

how emergent dynamics (e.g., object exploration) arise from the underlying mechanistic 

dynamics (e.g., neuronal firing). An interdisciplinary approach is needed to integrate the data 

in order to understand how the whole system functions and develops. This is because 

different levels of description (genetic, neural, behavioural, societal, etc.; see Fig. 1) 

constrain each other. For example, the firing of a neuron is partly constrained by activity at 

the genetic level (gene expression), while the expression of a gene in a neuron is partly 

constrained by the firing pattern of that neuron (Flavell & Greenberg, 2008; Leslie & Nedivi, 

2011; Tyssowski et al., 2018). Causality thus appears to be multidirectional and distributed 

across levels in complex systems. Therefore, it is important to study interactions between 

levels, rather than each level in isolation. 

How can we piece together the many interactions that occur across different 

timescales both within and between different levels? We need to bring together different 

methodologies which have been applied to the DS field: neurobiological methods (including 

animal modelling, induced pluripotent stem cells (iPSC) research, and post-mortem 

histology), human brain imaging, cognitive and behavioural experiments, observational 

studies, and computational modelling. Each method has its strengths and weaknesses. A 
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range of cutting-edge techniques can be used to probe mechanistic pathways by manipulating 

variables such as gene expression. However, these tend to involve mouse models or human 

cells that have been developed in a lab environment. They may therefore generate findings 

that are not directly applicable to humans and need to be interpreted with caution. On the 

other hand, a number of methods can be used directly with humans, but for ethical reasons 

these rarely involve manipulations that elucidate mechanistic causes. It is therefore 

challenging—perhaps even impossible—to investigate different levels of description using a 

single method or a single population in order to understand how levels interact and what 

processes give rise to the DS phenotype. But it is possible to piece together evidence from 

different studies, disciplines, and techniques, capitalizing on their different strengths. And it 

is only through converging evidence (consilience) that we can begin to make sense of the 

field.  

In this chapter, we try to bind evidence from different levels into a coherent 

developmental story. This will mean that parts of this chapter will be suggestive rather than 

explicit, based on tentative rather than conclusive pieces of evidence. But these parts are far 

from trivial. We include them because they highlight links between levels that need 

exploring. Our hope is that binding evidence from different disciplines may help us to grasp 

the bigger picture and/or generate new hypotheses. We focus on the first few years after birth 

in DS because in order understand how the DS phenotype gradually emerges, it is important 

to focus on early developmental constraints (see D’Souza, D’Souza, et al., 2017, for 

discussion). Of course, it would be interesting to study developmental trajectories from the 

earliest moment, from conception. But practical and technological limitations currently make 

it very difficult to study and integrate information on the different levels prenatally. Thus, we 

offer a compromise. In this chapter, we seek to link information from different levels at the 

earliest possible time in development that we believe this can currently be attempted: infancy.  
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We start at the level of the genes (because DS is diagnosed on this level) and then 

move ‘up’ the levels of organisation. It is important to note that this does not mean that the 

genetic level is more fundamental or important than the ‘higher’ levels (the word ‘hierarchy’ 

is a misnomer in this context).3 Another crucial point is that our use of the words ‘hierarchy’ 

and ‘levels’ do not imply unidirectional causality; the different levels constrain each other. 

Causality is distributed and multidirectional, and organisms adapt to the world through the 

feedback they receive from acting on it.  

 

3 Trisomy 21 constrains neural plasticity 

The genetics and neurobiology of DS have been extensively reviewed elsewhere (e.g., 

Dierssen, 2020; Stagni et al., 2018; Vacca et al., 2019). Here we focus on connections 

between the different levels of description to understand how they constrain each other. The 

start state of DS includes the presence of a partial or complete triplication of chromosome 21 

(trisomy 21) (Reeves et al., 2001). Although chromosome 21 is the smallest human 

chromosome, making up only 1.5% of the human genome (Dierssen, 2012), the extra 

chromosome contributes to diffuse, widespread, and cascading atypicalities in brain and 

cognitive development. Not every gene on chromosome 21 is overexpressed in DS 

(Antonarakis, 2017), but dysregulation of genes such as DYRK1A, APP, OLIG1, OLIG2, and 

RUNX1 is known to constrain cortical development (Sobol et al., 2019). For example, 

DYRK1A is involved in the production of an enzyme that regulates proteins involved in cell 

proliferation and differentiation (which, after cell migration, results in an accumulation of 

neurons in cerebral cortex by 20-21 weeks gestation) (Nakano-Kobayashi et al., 2017; Park et 

al., 2009; Stagni et al., 2016). This process is atypical in DS. For example, cell proliferation 

 
3 We could have used the word ‘scales’ instead of ‘levels’, from small (genes) to large (society). We only use 

the word ‘levels’ because it is a familiar term and one could argue that structures such as the brain and society 
emerge from more basic layers of organisation such as atoms and molecules. 
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is reduced (Guidi et al., 2011; Larsen et al., 2008). Whereas typically developing (TD) 

foetuses at 19 weeks gestation were found to have ~10.4 billion neocortical cells (neurons 

and glia), foetuses with DS at 19 weeks gestation had only ~6.85 billion (Larsen et al., 2008). 

Moreover, neural progenitor cells in DS are less likely to acquire a neuronal phenotype and 

more likely to acquire an astrocytic phenotype (Stagni et al., 2018). More astrocytes in DS 

are likely to exacerbate overexpression of a gene located on chromosome 21 (S100B) whose 

product (the S100B protein) is secreted by astrocytes, and which, unless suppressed, impairs 

neurogenesis and induces neuronal cell death in DS (Chen et al., 2014). Consequently, the 

brain in DS develops both fewer neocortical cells than the TD brain and fewer neurons 

relative to overall brain cells (Stagni et al., 2018). 

The DYRK1A enzyme is also involved in regulating proteins that form dendrites and 

dendritic spines (neuronal outgrowths that enable the neuron to receive signals from other 

neurons) (Park et al., 2009). Infants with DS present with spine dysmorphology and have less 

dendritic arborization and fewer dendrites/spines than TD infants (Becker et al., 1986; 

Benavides-Piccione et al., 2004; Purpura, 1975; Takashima et al., 1981; Wisniewski & 

Schmidt-Sidor, 1989). The abnormalities in spine morphology and cell proliferation may 

explain another finding: cortical lamination (the 7- to 10-week-long process through which 

the cortical neurons rearrange to form layers) is delayed and atypical in DS, and several 

cortical areas show underdeveloped gyral patterns (Golden & Hyman, 1994) .  

In sum, the altered expression of genes on chromosome 21 has cascading effects on 

brain development, including cell development and cortical organization (for summary, see 

Fig. 2). While the impact of the atypicalities in cortical lamination on the developing system 

is unclear, fewer dendritic spines should result in less input from other neurons, which, in 

combination with fewer neurons, would lead to reduced neural signalling. Fewer dendritic 

spines may also contribute to inhibitory predominance. For instance, while the most common 
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neurons (principal cells) excite each other via dendrites and dendritic spines, one family of 

neurons (interneurons) often control (inhibit) the activity of principal cells by targeting the 

cell body – i.e., bypassing dendrites and spines (Buzsáki, 2006). Interneurons may therefore 

have more influence on brain function in DS. Indeed, there is evidence of increased 

inhibitory (relative to excitatory) activity in mouse models of DS (for a review, see 

Contestabile et al., 2017).  

 

 

Figure 2. (a) Compared to typical development (EU = euploid mouse), a mouse model of DS 
(Ts65Dn) shows impairment in proliferation, reduced cellularity, decreased neurogenesis, increased 
astrogliogenesis, dendritic hypotrophy, reduced connectivity, and reduced brain size (as indicated by 
up/down arrows). Adapted from Bartesaghi et al. (2015); (b) Schematic representation of a neuron 
depicting atrophies in dendrite morphology in brains of individuals with DS (right) compared to TD 
individuals (left). Adapted from Kulkarni & Firestein (2012). The DS neuron contains fewer dendritic 
spines than the TD neuron. Also, dendritic spines in DS often have larger heads. Adapted from 
Phillips & Pozzo-Miller (2015). Image credit: Elsevier. 

 

Inhibition is necessary for brain function. In its absence, sensory input generates 

similar widespread one-way patterns of activation (Buzsáki, 2006; Dichter & Ayala, 1987). 
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Interneurons can stabilise activity (through feedback loops), dampen activity (feedforward 

loops), and segregate activity (by suppressing the activity of some neurons and not others) 

(see Buzsáki, 2006, for discussion). However, brain function requires an appropriate balance 

between excitation and inhibition (Haider et al., 2006). Inhibitory predominance and reduced 

signalling in DS are likely to affect how the neurons in a system self-organise and optimize 

their functionality. To adapt to the world, neurons require some degree of flexibility 

(plasticity). They need to communicate with each other and connect to the external world in 

order to calibrate to it. Communication between neurons occurs via synapses between 

neurons, and most synapses are found on the neurons’ dendritic spines. Synapses are thus the 

sites at which plasticity (learning) occurs at the level of the brain. As intimated above, 

learning involves both the flow of information (through excitatory connections) and control 

of that flow through inhibition to form coalitions or specialized subsystems of neurons. 

Plasticity enables the developing system to learn from and adapt to the environment, even in 

the face of extreme adversity such as brain injury. However, if neural communication in DS 

is constrained by lack of synaptic resources and over-inhibition, then flexibility (synaptic 

plasticity) and the ability of the system to adapt will be compromised (Buzsáki, 2006; see 

also Singer et al., 2019). 

 For learning to have a long-lasting effect (i.e., to be adaptive in the long term), it 

needs to be consolidated within the system. In the human brain, this process requires 

molecular and cellular stabilizing mechanisms. These stabilizing mechanisms include 

homeostatic negative feedback mechanisms (homeostatic plasticity) that are sensitive to, and 

regulate, the level of neural excitability (Turrigiano & Nelson, 2004). In this way, excitatory 

connections may lead to structural changes in post-synaptic material (e.g., dendritic spines) 

that are subsequently stabilized by genetic and molecular activity that is, in part, facilitated 

by inhibitory connections. We therefore speculate that inhibitory predominance in DS results 
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in over-regulation of neural excitability, further increasing the excitatory-inhibitory (E/I) 

imbalance and reducing the plasticity of the brain, and thus its capacity to adapt to the 

external world. This is consistent with the findings of a study that used single-cell-resolution 

intravital microscopy to monitor cortical tissue grafts derived from the skin fibroblasts of two 

individuals with DS (Real et al., 2018). Real and colleagues had reprogrammed the 

fibroblasts in vitro to form induced pluripotent stem cells (iPSCs), which were then 

differentiated into cortical neurons, labelled with fluorescent proteins (markers), and 

transplanted into the brains of mice. Longitudinal in vivo imaging of the markers revealed 

increased synaptic stability and reduced functional neural network activity (less oscillatory 

activity) in the DS neurons than in disomic clones without the extra copy of chromosome 21 

(Real et al., 2018). Structural changes at the synapse were shown to be modifiable in three 

different DS mouse models (Tg, Ts65Dn, Dp1Yey) by inhibiting DYRK1A activity, which 

was associated with improved learning and memory (Nguyen et al., 2018). 

Although this section of the chapter has described paths that branch out from trisomy 

21 and overexpression of the DYRK1A gene through fewer neurons and synapses to 

inhibitory dominance and reduced plasticity, these paths are not unidirectional. As explained 

in the previous section, DS is a complex adaptive system. This means that the system and 

components of the system are constantly in flux, adjusting to new conditions. For example, 

while there is an initial paucity of early born neurons, increased production of later-born 

neurons has been described in a Ts65Dn mouse model (Chakrabarti et al., 2007). This could 

be the result of adaptive processes. However, complex adaptive systems are also path-

dependent. This means that the timing of interactions can impact the developmental trajectory 

of the system. By the time the extra neurons have thickened the neocortical wall, the sparse 

connections between the early-born neurons may already have affected the process of 

neocortical lamination, a process that relies on spontaneous neural activity and is observed to 
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be both delayed and disorganised in DS (Golden & Hyman, 1994). To further illustrate the 

complexity of development, like most (if not all) parts of a complex adaptive system, the role 

of interneurons is not fixed: it is context dependent. For example, the major inhibitory 

neurotransmitter in the adult brain, -Aminobutyric acid (GABA), often acts through the 

chloride-dependent GABA type A (GABAA) receptor. Intracellular chloride concentration is 

high prenatally and only drops during neonatal life (Cherubini et al., 1991). This means that 

many interneurons are initially excitatory and only switch to an inhibitory role later in 

development. It is possible that because neocortical lamination requires spontaneous neural 

activity, prenatal brain development requires more excitatory connections than inhibitory 

connections, while postnatal brain development requires an increase in inhibitory control to 

prune connections and hone neural networks through postnatal experience. The relatively late 

upsurge of neurogenesis in DS may therefore thicken the cortex but not necessarily correct 

important differences in early E/I ratios. Moreover, the postnatal structure (and thus 

contribution) of the GABAergic interneuron changes through interactions with the external 

environment (Donato et al., 2013), which highlights the complex interplay between the 

various levels. In sum, the path from genes to neural networks is not unidirectional; the 

developmental trajectory of the system is constrained by manifold interactions across levels 

of description and timing. 

 

4 Neural plasticity constrains specialization 

What may reduced synaptic plasticity mean for infants with DS? Early in typical 

development, the brain is characterized by overproduction of unspecified synaptic 

connections (Bourgeois, 2008; Greenough et al., 1987). Thus, patterns of activation in the 

infant brain are more diffuse than those in the adult brain. Brain activation becomes 

increasingly specialized (and thus more efficient) over developmental time through 
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interactions between various brain regions and the environment (Bates et al., 1996; Fair et al., 

2007; Johnson, 2001, 2011). Indeed, the process of specialization has been identified in 

several developmental domains, including face perception (e.g., Pascalis et al., 2005), 

cognitive control (e.g., Crone, 2014), phoneme perception (e.g., Werker & Hensch, 2015), 

emotional reactivity and regulation (e.g., Somerville & Casey, 2014), and motor development 

(e.g., D’Souza, Cowie, et al., 2017).  

In typical development, the number of synapses reaches its peak in early childhood 

(Huttenlocher, 1979; Huttenlocher & Dabholkar, 1997; Liu et al., 2012). Synapses are 

initially weak but some are strengthened through experience (Hebb, 1950). To reduce noise 

in the system and increase signal-to-noise ratio, unused synapses become weaker and are 

eventually pruned out (Colman et al., 1997; Navlakha et al., 2015; Sengpiel & Kind, 2002; 

Sretavan & Shatz, 1984). Whereas synaptogenesis provides the brain with plasticity (which 

enhances the influence of postnatal experience on neural circuitry), synaptic pruning 

stabilizes the experience-driven changes that occur when self-organizing neural circuitry 

specializes to its environment (Johnson, 2001, 2011). Fewer neurons and reduced synaptic 

plasticity in infants with DS are likely to lead to a worse signal-to-noise ratio. This may in 

turn make it more difficult for the DS brain to specialize to its environment (Rubenstein & 

Merzenich, 2003). Moreover, increased inhibition, sparser neurons/synapses, and spine 

dysmorphology may make excitatory synapses in DS more vulnerable during the pruning 

process. This is because pruning occurs through synaptic activity, and synaptic activity is 

constrained by inhibitory processes, the number of neurons/synapses, and spine morphology 

(Colman et al., 1997; Cowan, 1979). Indeed, the neuronal derivatives of trisomy-21-induced 

pluripotent stem cells (iPSCs) (the reprogrammed cells of two individuals with DS) showed 

less synaptic activity than an isogenic control that is disomic for human chromosome 21 

(Weick et al., 2013). Furthermore, because inhibitory synapses are less affected by pruning 
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processes than excitatory synapses (De Felipe et al., 1997), pruning may further disrupt E/I 

imbalance (increase inhibitory predominance) in persons with DS. Indeed, the rate of pruning 

of inhibitory synapses is disrupted in Ts65Dn mouse models, resulting in an increase of 

inhibition (Mitra et al., 2012). Thus, reduced plasticity may make it more difficult for the DS 

brain to specialize in the same way or to the same extent as the TD brain. 

The process of specialization also requires long-range connectivity between brain 

regions. This is because learning and development involve interregional interactions as well 

as intraregional refinement (Bassett & Sporns, 2017; Johnson, 2001, 2011). Interregional 

communication depends on axonal processes that can reach considerable distances in the 

brain and fast transmission. To establish fast transmission, axons are wrapped in a lipid-rich 

substance called myelin (Waxman, 1980). Traditionally considered to be modifiable only by 

damage, it now appears to participate in brain plasticity and be at least partly regulated by 

experience: brain imaging studies suggest that changes in white matter (which reflect changes 

in myelination) correlate with learning, and cellular studies reveal that myelination is 

modulated by neural activity (Almeida & Lyons, 2017; Fields, 2015; McKenzie et al., 2014; 

Mount & Monje, 2017). Myelination therefore plays an important role in brain plasticity and 

specialization. Yet, hypomyelination is observed early in development in DS, as 

demonstrated by a multi-region transcriptome analysis of myelin protein expression (Olmos-

Serrano et al., 2016), histological examination (Ábrahám et al., 2012; Wisniewski & 

Schmidt-Sidor, 1989), magnetic resonance imaging (MRI) (Koo et al., 1992), and diffusion 

tensor imaging (DTI) (Gunbey et al., 2017). Moreover, a small near-infrared spectroscopy 

study found reduced long-range functional connectivity in infants with DS (n = 5) compared 

to 27 chronological age-matched term or late preterm and early term TD controls (Imai et al., 

2014). Emerging evidence suggests that the dysregulated (genetic and molecular) signalling 

pathways that affect neuronal proliferation and differentiation also disrupt the process 
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through which progenitor cells differentiate into the cells that form myelin, oligodendrocytes 

(see Reiche et al., 2019, for review). Brain plasticity, neural connectivity, and specialization 

in DS may therefore be affected by hypomyelination as well as fewer neurons and fewer 

synapses.    

Although functional communication within and between brain regions is atypical in 

young children with DS, the process of specialization has yet to be studied in these children 

(see Hamner et al., 2018, for a review of the sparse paediatric neuroimaging literature). There 

is, however, indirect evidence from the adult literature (for a review of functional magnetic 

resonance imaging (fMRI) studies in DS, see Carbó-Carreté et al., 2020). For example, brain 

activity during a passive listening task was studied in nine young adults with DS using fMRI 

(Reynolds Losin et al., 2009). While nine chronological age-matched TD comparison 

participants showed more activation (in classic receptive language areas) in response to 

language (forward speech) than non-language (backward speech) stimuli, the individuals with 

DS showed almost no difference in activation patterns between the two. The individuals with 

DS also showed a more diffuse brain response than the TD individuals, with greater 

activation in cingulate gyrus and parietal lobes. This suggests that the DS brain had not 

specialized for hearing speech, at least not to the same extent as the TD brain. Furthermore, 

Anderson et al. (2013) measured the brain activity of young adults with DS watching 

cartoons, and found that activity in adjacent brain regions was more synchronized than in TD 

participants matched on chronological age, while the opposite was true for distant brain 

regions. Diffuse local connectivity and reduced long-range connectivity is a hallmark of early 

brain development. As the brain specializes over developmental time, short-range 

connectivity decreases and long-range connections increase (Fair et al., 2007, 2009; 

Moraczewski et al., 2018). Therefore, Anderson et al.’s data suggest that the DS brain has not 

specialized to the same extent as the TD brain. 
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5 Specialization is driven by perception-action cycles 

Specialization is not a passive process; the infant calibrates its internal operations to the 

external world by actively exploring (selecting, acting on) and sampling it (Buzsáki, 2006; 

Frankenhuis & Panchanathan, 2011; Held & Hein, 1963; Piaget, 1954). This is achieved 

through cycles of perceiving and acting (Edelman, 1987; Gibson, 1988; Gibson & Pick, 

2000; Sporns & Edelman, 1993). As Ulrich (2010, p. 1871) explained: 

 

“As newborns use their available eye muscle strength and control to attend to objects or 

people moving through their space, they push their systems, bit by bit, to go farther, to see 

more and longer. These repeated cycles of moving and perceiving the consequences lead, 

over time, to sufficient control of head and neck muscles to lift the head and eyes upward, 

leading to new, interesting things to explore. Their efforts have cascading effects, enabling 

more and longer movements through greater distances, toward objects, people, and sounds 

that attract them. Bit by bit, the foundation takes shape and expands for discovering new 

concepts, consistencies, and motor control.” 

 

From this, it follows that if an infant is exposed to an atypical environment that 

hampers exploration, or its capacity to explore or sample the environment is limited (as may 

be the case in infants with DS), then the process of specialization will be affected and the 

infant would be more likely to develop atypically (Frankenhuis & Panchanathan, 2011; 

Johnson et al., 2015; Karmiloff-Smith et al., 2012). 

 

5.1 Perceptual and attentional constraints on information sampling in infants with DS 

In order for the organism to specialize, it must be able to sample information from the 

environment (Frankenhuis & Panchanathan, 2011). This process is constrained by the ability 
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to sense and perceive information. Early in development, DS is associated with perceptual 

difficulties in a number of modalities, including visual (John et al., 2004), auditory (Roizen et 

al., 1993), and tactile (Brandt, 1996). Furthermore, infants and toddlers with DS seem to 

struggle to integrate information from different modalities (multisensory/multimodal 

integration; D’Souza et al., 2016). Emerging evidence also points to lower responsivity in 

children with DS as reported by their caregivers on the Short Sensory Profile questionnaire 

(Bruni et al., 2010; Will et al., 2019). Taken together, it is possible that many infants with DS 

may not notice changes in the environment that TD infants would sample, learn about, and 

act on (e.g, Ulrich et al., 1997).  

Even if young children with DS notice a change in the environment, there is evidence 

that they take longer than chronological and mental age-matched TD infants to orient their 

focus of attention towards it (D’Souza, D’Souza, Jones, et al., 2020). This means that they 

may sample less from (and learn less about) the environment than their TD peers. 

Furthermore, some fleeting events may be missed altogether, potentially involving a loss of 

some critical learning moments (e.g., the parent labelling an object). This is consistent with 

findings that faster attentional orienting is concurrently associated with better cognitive 

performance in 9-month-old infants with DS (Fidler, Schworer, Will, et al., 2019) and greater 

language ability in 15-month-olds (both with and without DS; D’Souza, D’Souza, Jones, et 

al., 2020).   

 

5.2 Less efficient information processing in infants with DS  

Once the infant has perceived and oriented to an external stimulus, they need to process the 

information more deeply. One of the earliest ways that infants process information sampled 

from their environment is through habituation. Habituation (a progressive reduction in 

response to a repeated stimulus) reflects the process through which an internal representation 
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of a familiar stimulus is gradually built up; the end triggers a switch in attention from the 

familiar stimulus to a novel one (Bremner & Fogel, 2004). If there is inhibitory 

predominance and a lack of neurons in the DS brain (and thus a lack of plasticity), it may 

take longer for the brain to build up sufficiently detailed representations – and thus take 

longer for it to habituate to stimuli in the external world. Indeed, this seems to be the case. 

Whereas ten TD foetuses during the final trimester of pregnancy habituated to repeated 

presentations of an auditory stimulus, atypical habituation was observed in two foetuses with 

DS (Hepper & Shahidullah, 1992). One of the foetuses with DS failed to habituate; the other 

showed a slower rate of habituation than all ten TD comparisons. Sadly, the foetus that failed 

to habituate did not survive long after birth, hinting at a link between habituation and 

developmental outcomes. Indeed, in typical development, infant habituation patterns are 

predictive of later-emerging cognitive functions such as language development (Bornstein & 

Tamis-LeMonda, 1989; Ruddy & Bornstein, 1982) and childhood intelligence (Bornstein & 

Sigman, 1986; Kavšek, 2004; McCall & Carriger, 1993; Rose et al., 1986). Furthermore, 106 

neonates born at risk of intellectual delay (including DS) successfully habituated to a verbal 

stimulus, but oriented less to a novel stimulus and, later, less to the reappearance of the 

familiar stimulus than 37 TD neonates, indicating atypical information processing as early as 

41 weeks (± 3 weeks) gestational age (Zelazo et al., 1989).   

Atypical habituation has also been described in infants with DS using 

electroencephalography (EEG), a measure of neurophysiological activity in the brain. 

Whereas TD 6- and 12-month-old infants who were presented with a repetitive auditory 

stimulus showed neural habituation through a progressive decrement in the amplitude of their 

auditory evoked responses (AER) (Barnet et al., 1971), 6- and 12-month-old infants with DS 

did not show this pattern of neural habituation; which was also not observed among one-

month-olds, either with or without DS (Barnet et al., 1971). These data hint that the ability to 
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process auditory information changes over the first half year of postnatal life in typical 

development, but less so (or not at all) among infants with DS. Atypical neural habituation in 

the auditory domain has also been identified in studies of older children with DS (Díaz & 

Zurron, 1995; Seidl et al., 1997), supporting the notion that infants with DS are slower at 

building internal representations of auditory stimuli. Similar findings have also been reported 

in the visual domain. For example, using a visual oddball paradigm in which one face was 

presented for 80% of the trials and another face for 20% of the trials to measure face 

discrimination and EEG in 6-month-old infants, Hill Karrer and colleagues (1998) found that 

attenuation of brain activity in response to the repetitive face stimuli (habituation) was more 

gradual in the infants with DS than in chronological age-matched TD participants. 

Less efficient or slower habituation mechanisms in infants with DS, which is 

consistent with difficulties in building internal representations, may help to explain a core 

characteristic of DS – experiencing more difficulty in processing verbal information than 

visual information. In a familiar environment, an infant is unlikely to need the same level of 

representational detail to be able to discriminate between naturally occurring visual stimuli 

than between auditory stimuli. For example, during social interaction a child may not need to 

discriminate every featural change it observes in the body or face of an interacting social 

agent, but it would need to discriminate featural changes in any accompanying speech stream. 

Furthermore, key physical properties of speech can change rapidly over the duration of an 

utterance. This makes speech discrimination a challenging task.  

If habituation is less efficient or slower in DS, an infant with DS would require more 

exposure to a stimulus in order to form an internal representation of it. This dovetails with the 

finding that infants with DS are relatively slow at disengaging attention from a visual 

stimulus in order to redirect attention to a novel stimulus (D’Souza, D’Souza, Jones, et al., 

2020). They may require more time to build up an internal representation of a visual stimulus 



THE EMERGING PHENOTYPE IN INFANTS WITH DOWN SYNDROME 

 

24 

and are thus slower at switching attention to other stimuli. Rather than being an impairment, 

the long disengagement latency might therefore be a useful adaptation: infants with DS might 

benefit more by not shifting attention quickly. There is always a trade-off, however. By 

spending more processing time on a single stimulus, the infant with DS is spending less time 

exploring the environment. 

 

5.3 Less motor activity in infants with DS  

Information sampling is not a passive process. It usually involves motor activity. Indeed, 

motor activity has been proposed to be at the core of early development (Piaget, 1952; Thelen 

& Smith, 1994; Von Hofsten, 2004). Even young infants actively select aspects of their 

environment to focus on by moving their eyes, reaching towards people and objects, and 

locomoting to new locations. TD infants generate a large amount of activity. By 3.5 months, 

TD infants experience 3-6 million eye movements (Johnson et al., 2003). Around the first 

year of life, TD infants spend about half of their day manipulating objects (Karasik et al., 

2011). Between 12 and 19 months, TD toddlers produce around 14,000 steps per day (in 

terms of distance, this is equivalent to walking the length of 46 American football fields) and 

fall around 100 times per day (Adolph et al., 2012). TD children therefore generate what 

seems to be an extensive amount of motor activity to develop their skills to adult-like levels. 

Because the DS brain is characterised by fewer neurons, inhibitory predominance, and a poor 

signal-to-noise ratio, it may require even more motor activity to adapt its neural circuitry to 

the external world than the TD brain. Yet, from very early on, infants with DS produce less 

spontaneous motor activity than TD infants of the same chronological age (Mazzone et al., 

2004). Motor activity in infants with DS also differs from that of the TD infants in terms of 

intensity and complexity. Infants with DS produce more low-intensity and less high-intensity 

spontaneous leg motor activity than TD infants of the same chronological age (McKay & 
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Angulo-Barroso, 2006). They also produce fewer complex leg movements (i.e., kicking 

patterns; Ulrich & Ulrich, 1995) in comparison to TD infants matched on chronological age 

and TD infants matched on motor age. 

Why do we see these differences in motor activity? Motor ability relies on the 

interactions of multiple subsystems (Thelen & Smith, 1994), many of which are atypical in 

infants with DS. Reduced motor activity in DS is likely to be a consequence of perceptual 

difficulties, atypical neural constraints, and an adaptive response to muscular and skeletal 

differences, including low muscle tone (hypotonia), joint laxity, and hypermobility (Block, 

1991; Cardoso et al., 2015; Cowie, 1970; Lott, 2012; Ulrich & Ulrich, 1993). Furthermore, 

common health-related issues may also play a role, including congenital heart disease 

(Alsaied et al., 2016; Pfitzer et al., 2017) and sleep difficulties (Hauck et al., 2018; McKay & 

Angulo-Barroso, 2006). A combination of these constraints may make it more challenging 

for the developing system with DS to generate motor activity. Thus, the developing system 

may end up producing less motor activity, which would lead to fewer experience-dependent 

changes, impacting the system’s developmental trajectory. Indeed, individual differences in 

early motor activity has been linked to the development of motor milestones in DS. Infants 

who are more active than the mean at 2 or 3 months of age achieve several prone and sitting 

skills earlier (Hauck et al., 2020). Furthermore, intensity of leg kicks predicts onset of 

walking in DS, as infants who show more high-intensity leg motor activity at around 12 and 

14 months of age start walking earlier than those who show less of this activity (Lloyd et al., 

2010). Although one explanation may be that those children whose starting state is more 

typical tend to produce more motor activity and reach their developmental milestones earlier, 

a randomized controlled study suggests that facilitating early motor experience has a positive 

effect on the emergence of later motor skills (Ulrich et al., 2001). Specifically, Ulrich and 

colleagues (2001) showed that infants with DS who underwent a home-based stepping 
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training intervention achieved independent walking by an average of 101 days earlier than 

infants with DS who were not part of this intervention. This suggests that despite their 

particular genetic and neurocognitive constraints, the infants with DS were able to benefit 

from the extra motor activity, altering their developmental pathways. 

Motor activity in DS does not only differ from typical development in onset and 

intensity, but also in the type of strategies employed to reach a particular motor state. 

‘Symmetrical’ strategies have been observed across a range of contexts in DS. For example, 

some children with DS use a symmetrical strategy (i.e., they move their limbs symmetrically 

along the body midline) to lift themselves up from a prone position into a sitting position, 

which involves doing the splits (Lydic & Steele, 1979). Infants and toddlers with DS have 

also been reported to use a symmetrical strategy when rising up from the floor into a standing 

position; they tend to simultaneously use both hands and both feet to provide maximal 

support (Lauteslager, 1995). A symmetrical strategy for locomotion—bottom shuffling—has 

also been described in DS (Robb, 2015). Although atypical, these symmetrical strategies 

seem to be adaptive strategies employed to compensate for hypotonia and hypermobility of 

joints (Åkerström & Sanner, 1993; Kugel, 1970) and/or reduced posture reactions (balance 

and self-righting; Haley, 1986).  

Though adaptive (it is likely to be more adaptive, e.g., to be able to sit up by ‘doing 

the splits’ than not to sit up at all), these symmetrical strategies are likely to constrain the 

type of activity and experiences that the developing system can generate in the future, taking 

the system down a different developmental path. Reliance on symmetrical strategies may lead 

to less sensorimotor experience with differentiated limbs. Consequently, regular use of 

symmetrical strategies may impact motor behaviour in situations when the strategies are not 

adaptive, such as when postural stability is provided by a seat (for an example in TD infants, 

see Corbetta & Bojczyk, 2002). In other words, if infants with DS regularly use symmetrical 
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strategies as adaptations, they may subsequently have difficulties decoupling their limbs in 

situations when it would have been possible and advantageous to do so. This may potentially 

affect the development of motor skills that require asymmetrical strategies, such as 

intermanual coordination (e.g., using one hand to hold a jar while the other hand twists the lid 

of the jar). This is consistent with behavioural findings in school-aged children and adults 

with DS which show that, although they face many motor challenges, intermanual 

coordination is particularly challenging for this population (Ringenbach et al., 2002; Spanò et 

al., 1999).  

Early motor ability not only constrains future motor ability, but also impacts how 

infants explore and interact with the world around them, such as how they engage with 

objects. Differences in self-generated activity have been observed in the emergence of 

reaching for objects. De Campos and colleagues (2013) followed infants with DS and TD 

infants monthly, with a first assessment at the age of 4 months. As expected, the majority of 

TD infants were able to reach at the age of their first assessment (i.e., at 4 months; Spencer et 

al., 2000). They subsequently showed a gradual increase in number of reaches. The age at 

which the infants started reaching was a better predictor of later reaching behaviour than 

chronological age. This suggests that reaching behaviour is dependent on experience rather 

than on chronological age (Carvalho et al., 2008). This conclusion is in line with the proposal 

that TD infants act and select aspects of their environment as a function of their current level 

of abilities (Kidd et al., 2012; Rovee-Collier & Cuevas, 2009). TD infants spontaneously 

repeat their actions and, in so doing, practise new emerging skills (Adolph et al., 2012). De 

Campos et al. (2013) observed the same trend in infants with DS, with an increasing number 

of reaches after onset of reaching (even though reaching onset was delayed). However, the 

average number of reaches and subsequent object exploration was lower in the infants with 

DS. Thus, the children with DS both started reaching later and practised their actions less 
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frequently than the TD infants. Although some developmental delay may be expected, it is 

not obvious why the infants with DS produced less reaching. Less repetition may be due to 

the actions being more taxing to infants with DS compared to TD infants. Emerging motor 

actions, such as reaching in young infants, requires the coordination of many motor, 

perceptual, and cognitive resources (Berger et al., 2019; Boudreau & Bushnell, 2000; for a 

review, see Berger et al., 2018). Whereas in TD infants many of these resources are freed as 

movements become automatized over development (Berger et al., 2018) and as the motor 

system becomes specialized (D’Souza, Cowie, et al., 2017), these processes are possibly 

delayed in DS. Thus, motor performance may be drawing on diverse (and already limited) 

resources in DS for a longer developmental period. The adaptive response to taxing motor 

actions may be to produce less of them. Taken together, even though the exact reasons are 

unclear, infants with DS engage less with their physical environment than TD infants. 

Less motoric engagement with the environment is likely to negatively impact the 

development of other domains in infants with DS. Several studies in TD infants have 

demonstrated cascading effects of the motor domain on other domains. Independent sitting 

and visual-manual exploration in 4.5- to 7.5-month-olds were found to be related to infants’ 

3-dimensional object completion abilities (Soska et al., 2010). Crawling experience was 

found to increase sensitivity to optic flow information for balance (Campos et al., 2000) as 

well as mental rotation abilities (Schwarzer et al., 2013). Motor development was also found 

to be associated with social development. Training 3-month-old infants to manipulate and 

reach for objects affects their visual exploration of social agents (Libertus & Needham, 2010, 

2011). Furthermore, the transition from crawling to walking was found to change interactions 

between infants and their caregivers, increasing opportunities for more advanced social 

interactions (Clearfield et al., 2008; Karasik et al., 2011, 2014). This could potentially 
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contribute to the positive association between walking and language development (Walle & 

Campos, 2014).  

If different domains (e.g., motor and social development) are interconnected and 

interdependent, then a deficit in one domain (e.g., motor) may have cascading effects on 

other domains (e.g., social). However, this does not mean that a particular domain provides 

the necessary and sufficient conditions for the development of other domains (Campos et al., 

2000; Iverson, 2010). For example, even though vision and locomotion may be associated 

with language development in TD children, it is clearly possible for a child to develop 

language even when they are unable to see or locomote. The components of the system 

would adapt to the constraints; an alternative pathway would emerge. However, due to other 

constraints such as reduced brain plasticity, an infant with DS may have fewer alternative 

pathways available to them than an infant with no or fewer atypical constraints. Thus, 

identifying early atypicalities in motor development in DS may be important because of their 

potential cascading effects on other domains. Indeed, there is some emerging evidence that 

such cascading effects may be operating in DS. Yamauchi and colleagues (2019) observed 

motor abilities to be positively associated with both cognitive and language abilities in 1- to 

3-year-olds with DS. This association strengthened with increasing age. Furthermore, onset 

of walking was suggested to facilitate both cognitive and language development in DS 

(Yamauchi et al., 2019). Even though longitudinal and intervention studies are needed to 

further probe these cascades in DS, the study supports the idea that early atypicalities in the 

motor domain may cascade onto cognitive and language development in DS. This may be an 

important focus of research, as infants with DS show particularly pronounced difficulties in 

motor development early in life (e.g., Carr, 1970; Harris, 1981; LaVeck & LaVeck, 1977). 

Indeed, motor development in DS seems to be delayed even when compared to mental age-
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matched children with developmental delays (Fidler et al., 2008). This may result in a unique 

set of cascading effects, potentially contributing to a DS-specific developmental trajectory.   

 

6 Perception-action cycles are embedded within social contexts 

As young infants improve their motor skills, they can reach further, move their bodies faster, 

and explore places and objects they could not before. But they do not do this in isolation; 

perception-action cycles are embedded within social contexts and are consequently 

constrained by interactions with parents, siblings, peers, and other social agents (Adolph & 

Hoch, 2019). For example, social agents are often useful sources of information and infants 

integrate social information to guide their perception-action cycles (Karasik et al., 2016; 

Tamis-LeMonda et al., 2008). In the following section, we discuss how the perception-action 

cycles may interact with social contexts in the infant with DS. Could one adaptive response 

to motor difficulties and less efficient information processing in infants with DS be an over-

reliance on social agents? 

 

6.1 Over-reliance on social agents as an adaptive strategy 

At birth, visual acuity and the ability to physically interact with the external world is limited. 

This constrains the type of information that neonates can perceive and makes them largely 

dependent on their caregivers for visual input. What kinds of visual scenes do their caregivers 

create for them? A study using head-mounted cameras demonstrated that these mostly 

comprise their caregivers’ faces (Fausey et al., 2016). As the infants’ motor abilities develop, 

however, they take a more active role manipulating objects and locomoting – with their 

visual input shifting from faces to hands and objects (Fausey et al., 2016). If infants with DS 

present with motor delay and put their emerging motor abilities to use less than TD controls, 

then the nature of their visual input will likely change less over developmental time than for 
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TD infants. Perhaps this could partly explain the findings that, even though mutual gaze with 

a caregiver is initially slower to develop in infants with DS, it remains high over the first year 

of life whereas declines are seen among TD infants (Berger & Cunningham, 1981; Carvajal 

& Iglesias, 2000). In another observational study, 6- and 9-month-old infants with DS spent 

almost half of their time looking at their caregiver during free play, which was nearly twice 

as much as TD infants of the same chronological age (Gunn et al., 1982). If infants with DS 

receive more visual input of their caregiver, this might bias them to over-rely on this source 

of information. This may over time contribute to relative strengths in other social domains, 

such as joint attention (for a metaanalysis, see Hahn et al., 2018).  

The possible social bias is in line with observations that imitation abilities are 

relatively strong in children with DS (Nielsen & Hudry, 2010; Vanvuchelen et al., 2011). As 

John Langdon Down (1867) noted in early work on DS, individuals with DS seem to possess 

“considerable power of imitation, even bordering on being mimics” (p. 122). Even though 

imitation often has negative connotations, it may in fact be a very successful adaptive 

strategy for individuals with DS, as social agents are often useful and trustworthy sources of 

information. Hence, by imitating social agents, infants with DS may achieve goals that they 

would not easily accomplish through other means. Imitating others may be easier than 

generating and initiating novel ideas and actions. In support of this hypothesis, Wright and 

colleagues (2006) found that toddlers with DS use imitative strategies to solve cognitive 

tasks, even when it would be more appropriate for them to use different cognitively driven 

strategies. So, they seem apt at copying what they see around them rather than generating 

their own actions.  

Further evidence in support of this hypothesis comes from a study of children with 

DS interacting with their TD sibling. The children with DS often adopted the role of 

‘learner’, while their sibling took on the role of ‘teacher’ or ‘manager’ (Stoneman et al., 
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1987), irrespective of who was older (Abramovitch et al., 1987). Furthermore, children with 

DS were less likely to initiate interaction and more likely to imitate their sibling than vice 

versa (Knott et al., 1995). This asymmetry in interactions may again be an adaptive strategy 

in DS, but it could nevertheless further exacerbate an over-reliance on others. 

Over-reliance on others is likely to hinder the development of independent behaviour. 

Indeed, toddlers with DS at 21 months of mental age showed significantly more help-seeking 

behaviour during an object retrieval task than both TD children of the same mental age and a 

group of children with developmental disabilities of mixed or unknown aetiology (Fidler et 

al., 2005). Furthermore, lower levels of task persistence and higher levels of off-task 

behaviour in children with DS have been reported (Landry & Chapieski, 1989; Pitcairn & 

Wishart, 1994; Ruskin et al., 1994; Vlachou & Farrell, 2000). For example, 4-year-olds with 

DS have been found to engage in more off-task ‘party pieces’ or charming behaviour to 

socially engage the experimenter compared to chronological and mental age-matched TD 

groups (Pitcairn & Wishart, 1994). Anecdotally, during our testing sessions, young children 

with DS often attempt to terminate more challenging tasks by clapping to indicate that the 

tasks have somehow been completed. We rarely observe this behaviour in children with other 

neurodevelopmental disorders. These are certainly very creative and charming adaptive 

strategies to ending challenging or less engaging tasks. If reinforced, it is not inconceivable 

that these behaviours could steer developmental trajectories. Seeking help and ending tasks 

may be adaptive in the short term, but if it occurs at the expense of practising solving 

problems, then it may reduce skill development and independence in the long term. This is 

consistent with the finding that, later in life, individuals with disabilities are more likely to 
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select easier problems to solve, seek help from others, and demonstrate less satisfaction when 

working on problems (for a review, see Bybee & Zigler, 1998).4 

Although children with DS are often considered to be highly social, neither their 

sociability nor their over-reliance on social agents necessarily mean that they interact 

optimally with social agents. For example, Krakow and Kopp (1982) found that 19- to 38-

month-old toddlers with DS spent less time socially oriented (e.g., engaging their caregiver in 

play, handing toys to their mother, seeking assistance) and also less time exploring their 

environment (e.g., looking around at other people and/or distant toys) than mental age-

matched TD children. That poses the question of what they were doing during those 

interactions: 50% of the toddlers with DS engaged in stereotypic activity such as throwing 

toys and 75% of them spent time totally unoccupied (e.g., staring into space) (Krakow & 

Kopp, 1982). The fact that the toddlers with DS demanded less interaction from their 

caregivers than did the TD children suggests that over-reliance on external sources of 

information does not imply expertise in social interaction (see Cebula et al., 2010, for a 

review). Rather, less self-generated, exploratory, and social behaviours place a demand on 

the caregiver to initiate social exchanges and provide opportunities for exploration and 

learning. 

 

6.2 Parental behaviour may matter more for infants with DS  

If infants with DS are less likely to explore their environment and initiate social exchanges, 

then their caregivers may take a more active role. Even though findings on parenting styles in 

DS are mixed (for a review, see Daunhauer et al., 2017), a number of observations of parent-

child interaction have revealed that parents of children with DS are more directive than 

 
4 However, this may be highly constrained by the level of society and change with changing societal attitudes 

towards people with disabilities (Shogren et al., 2017). 
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parents of TD children matched on chronological age (Soukup-Ascencao et al., 2016), mental 

age (Cielinski et al., 1995; Schworer et al., 2018; Venuti et al., 2009), or both (Roach et al., 

1998). This is not dissimilar to observations in the study of children with DS interacting with 

their TD sibling (see above; Stoneman et al., 1987). There is some evidence that parenting 

style is associated with individual differences in the DS phenotype. For example, Gilmore 

and colleagues (2009) compared children with DS (and their mothers) to TD children 

matched on mental age (24-36 months) (and their mothers). The children were presented with 

a problem-solving task, and the ensuing parent-child interactions were observed. Although 

mothers of children with DS are often reported to be more directive, maternal style did not 

significantly differ across groups in this study, and mothers in both groups used similar 

verbal strategies (Gilmore et al., 2009). However, whereas maternal style was unrelated to 

task persistence in the TD children, greater persistence when working independently on a 

challenging task was observed in the children with DS whose mothers were more supportive 

of their autonomy (Gilmore et al., 2009). This suggests that parenting style may have more 

impact on children with DS than on TD children of the same mental age. 

Of course, causal relationships cannot be inferred from correlational studies. The 

development of persistence in children with DS may be driven by parenting style. 

Alternatively, children who are more dependent on others may be more likely to elicit 

directive parenting behaviour than children who are more independent. In addition, 

persistence may emerge through interactions among multiple diverse factors, of which 

internal motivation and parenting style are only two among many. Regardless of how it 

emerges, persistence in early childhood is associated with persistence in early adolescence in 

DS (Gilmore & Cuskelly, 2009).  

If children with DS are less active and their caregivers are more directive, then 

learning and development in DS may be largely driven by the caregiver’s selection of tasks. 
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If caregivers do have more impact on developmental processes in infants with DS as 

compared to TD children, then the beliefs that parents hold about their children are likely to 

affect children with DS more than TD children. Yet, obtaining a ‘true’ picture of an infant’s 

current level of abilities if that infant has DS may be more challenging because infants with 

DS often present with an uneven profile with particular difficulties in the motor domain. This 

may make it more difficult for the caregiver to evaluate their child’s developmental level and 

provide them with an appropriate amount and level of challenges – both of which are 

required for optimal learning (akin to a zone of proximal development; Vygotsky, 1978). 

Indeed, even though a group of children with DS at 18 and 24 months of mental age did not 

show any differences in task-directed behaviour as compared to TD children of the same 

mental age, Glenn and colleagues (2001) found that their parents rated them as scoring lower 

on object-oriented play and general competence. This is consistent with evidence from young 

children with motor delay (Wang et al., 2013). The potential mismatch between what the 

parent believes their child is capable of and what the child is actually capable of may further 

exacerbate the child’s difficulties. Thus, even though an immediate adaptive response to the 

more passive behaviours of infants with DS may be more directive behaviour in the 

caregiver, in the long term it may be more beneficial for the caregiver to encourage the child 

with DS to take a more active role; stimulate them to generate, plan, and initiate actions; and 

steer them away from relying on others for motivation and self-control (Glenn et al., 2001).  

 

7 Future directions 

7.1 Embracing complexity 

It is clear from the previous section that more research on infants with DS is needed in order 

to understand their development. The question is: what type of research? Most research 

(including our own) comprises group comparisons between DS and TD (and/or other 
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neurodevelopmental disorders). Sometimes it consists of associations between variables 

within a particular DS group. When planning the studies, we often think: If only we could 

measure more variables, we would finally understand how infants with DS develop. So we try 

to collect more information about the infants and their environment longitudinally (e.g., 

infant chronological age, infant mental age, health comorbidities, parental education, 

parenting style, sibling age, sleep patterns, family income, vocabulary size, memory abilities, 

attentional abilities, motor abilities); and when possible manipulate variables in order to 

understand their role in development. Thus, we study DS by first decomposing the system 

into separate units (the variables), and then by measuring/manipulating these units in order to 

understand their contribution to the system. In doing so, we are assuming that the system is 

complicated but understandable as the sum of its parts. Metaphorically, it is like trying to 

understand how fabric is made by cutting it into pieces, and then trying to reconstruct how 

each fibre fits together. But by taking apart the fabric, we no longer see how the fibres are 

plaited. Yet the structure and functional properties of a fabric (e.g., its strength, breathability, 

warmth) are contingent on how the individual fibres are woven together. Likewise, the 

structure and functional properties of a living system are contingent on how the individual 

units interact with each other. This is because the living system is not complicated but 

complex (for the importance of this distinction, see Den Hartigh et al., 2017).  

Complex systems cannot be understood by studying their parts in isolation; 

complexity emerges through dynamic multicausal interactions between interdependent, 

always-adapting components. It is very difficult—perhaps even impossible—to study all 

these interactions as the system adapts to and changes its environment over developmental 

time. But it is something to strive for – because it may not be possible to understand complex 

adaptive systems by breaking them down to their component parts, assigning each part a 

function, and then recomposing the system in a linear fashion. Embracing complexity 
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necessitates a study of interactions (between and within different levels) as they unfold 

moment-by-moment. Such an approach has provided unexpected insights into typical 

development (as we demonstrate below using the example of word learning) and thus we 

believe it is a very promising avenue for understanding how infants with DS develop. 

 As discussed in earlier sections, action-perception cycles are at the core of early 

development (Piaget, 1952; Thelen & Smith, 1994; Von Hofsten, 2004) and these are deeply 

embedded in social context (Adolph & Hoch, 2019). In fact, one of the most common 

contexts in which the developing child actively learns is parent-child interaction. During this 

free-flowing activity, parents direct or react to their child, while their child—who is often 

surrounded by interesting objects and in pursuit of their own goals—directs, reacts to, or 

ignores the activity of their parent. How do children learn in this rich (and thus potentially 

confusing) context? Traditional developmental research has been unable to answer this 

question, because it has predominantly used methods that require young children to sit and 

look at a computer screen (Fig. 3a). However, some studies now consider the child’s 

embodied experiences in interaction with their parent by measuring gaze using head-mounted 

cameras/eye-trackers (Suarez-Rivera et al., 2019; Yoshida & Smith, 2008; Yu & Smith, 

2012, 2013, 2016) (Fig. 3c). This technology allows researchers to investigate the dynamic 

interplay between various components of parent-child interaction (Fig. 3e)—eye movements 

(visually selecting an object), hand movements (grasping an object), and speech (describing a 

grasped object)—which work together to form optimal learning moments in TD 

infants/toddlers (Yu & Smith, 2012). 
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Figure 3. Comparison of (a) a remote eye-tracking setup with (c) a head-mounted eye-tracking setup. 
The remote eye-tracking setup allows researchers to track (b) the position of the eyes on a screen. 
Head-mounted eye-tracking enables researchers to record (d) the moment-by-moment gaze 
allocation of a child and a parent during naturalistic interaction, which captures (e) the dynamic 
interplay of various components in learning. Little is currently known about how learning unfolds 
moment by moment in (f) children with DS who often have perceptual, attentional, and motor 
difficulties. Image credit: (a) provided by Birkbeck Babylab; (b) modified from Task Engine - Face 
Popout (n.d.); (c) and (d) modified from Slone et al. (2018); (e) and (f) modified from Yu & Smith 
(2013).  
 

Research on the interplay between different components of parent-child interaction 

(eyes, hands, speech) has been challenging fundamental assumptions about many aspects of 

early development, most notably word learning and language development in TD children. 

For example, from an adult’s perspective it seems impossible for a child to learn the label for 

a single object in a cluttered visual scene containing multiple objects (the ‘referential 

ambiguity’ problem; see Quine, 1960), yet researchers who take into account the children’s 

perspective find that the problem of referential ambiguity disappears during parent-child 

interaction (Samuelson & McMurray, 2017; Yu & Smith, 2012). For example, Pereira and 

colleagues (2014) used a head-mounted camera to record gaze data from TD toddlers (16-25 

months) as they played with novel objects, and as the parent spontaneously named them. 

They found that toddlers’ allocation of attention is highly constrained by their hands/arms. 

Due to their limited reach, single objects often fill the toddler’s field of view. Parents are 

sensitive to these moments and often provide labels for the object during them, eliminating 
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the problem of referential ambiguity. In other words, in naturalistic settings, toddlers are not 

trying to learn labels by deducing what their caregivers are referring to; optimal word 

learning moments emerge from an interplay between eye movements (visually selecting an 

object), hand movements (grasping an object), and parental sensitivity (naming a grasped 

object) (Yu & Smith, 2012). This insight would have been missed had the variables been 

measured and analysed separately. 

How is this moment-by-moment learning constrained in infants with DS? We are 

currently investigating this question, but can make some predictions based on the DS 

literature. Infants with DS present with a number of perceptual, attentional, and motor 

difficulties that may limit the occurrence of optimal word learning moments (Fig. 3f). For 

example, infants with DS spend less time handling objects during parent-child interaction 

than TD infants of the same mental age (Legerstee & Weintraub, 1997). This is likely to 

reduce the number of optimal naming opportunities that a parent would have – and require 

the parent to be particularly sensitive and responsive to the child if they are to co-create a 

sufficient number of optimal learning moments. As a parent may experience more difficulty 

in evaluating and reacting appropriately to the needs of a child with DS than a TD child (see 

the previous section [6.2]), even if a child with DS were to hear the same number of tokens of 

a word, it may not occur during optimal learning moments. Furthermore, even if the child 

were to hear the word during an optimal learning moment, other processes necessary for 

word learning are often atypical in DS. As we mentioned above, reduced neural plasticity and 

atypical information processing may mean that infants with DS require more repetition than 

is typically necessary (for a computational model showing an atypical associative learning 

mechanism in DS, see Tovar et al., 2018). Also sleep, which plays an important role in 

learning and memory (and thus in word learning), develops atypically in DS (D’Souza, 

D’Souza, Horváth, et al., 2020; Edgin et al., 2015; for discussion of other constraints on 
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language learning in DS, see D’Souza, D’Souza, et al., 2017). To understand how infants 

with DS learn, it is thus necessary to embrace complexity and employ multiple 

methodologies (neuroimaging, head-mounted eye-tracking, movement sensors, etc.) across 

different timescales, with both the infant and their social partners as they interact in 

naturalistic settings. This approach could help us to understand why infants with DS diverge 

in their trajectories from TD infants and whether there is a DS-specific pathway. 

 

7.2 Diverging trajectories 

As infants with DS get older, they seem to progressively diverge from their TD peers. For 

example, a decline in standardized cognitive and motor scores in DS, relative to TD children, 

was found in Carr’s landmark longitudinal study of children who were tested at 6 weeks, 6 

months, 10 months, 15 months, and 24 months of age (Carr, 1970).5 This decline was 

particularly steep from 10 to 15 months of age. In other words, as children with DS develop, 

their standardized scores fall further behind those of their TD peers. This divergence is 

particularly pronounced for their areas of relative difficulties, giving rise to the classic profile 

associated with DS. Carr (1970) reported that from 6 months of age, mean standardized 

motor score was lower than mean standardized cognitive score in DS. A deceleration of 

development with increasing chronological age in DS has also been found in other studies, as 

has the finding that motor standardized scores lag behind cognitive standardized scores 

(Harris, 1981; LaVeck & LaVeck, 1977). Increased divergence over developmental time has 

also been found in expressive language, another area of relative difficulty in DS. While 

expressive language ability was at an appropriate level for almost 50% of 22-month-old 

children with DS given their mental age and receptive language ability, this was the case for 

only 21% of them two years later (Miller, 1992).  

 
5 These children have been followed across the lifespan (e.g., Carr & Collins, 2018). 
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In order to understand why the trajectories of infants with DS diverge from those of 

TD infants, as well as how a DS-specific phenotype might emerge, the interactions of various 

constraints require longitudinal investigations across a range of domains. These 

investigations may benefit from comparing different disorders, as many constraints are 

unlikely to be specific to DS. In fact, it is likely that different disorders share similar 

constraints in early development, but particular clusters of constraints, or their intensity or co-

occurrence, or the timing of the interactions between them, may increase the likelihood that 

disorder-specific phenotypes emerge. The converse may also apply: different constraints may 

give rise to similar phenotypes through common adaptations (Johnson, 2017; Oliver et al., 

2000). For this reason, a multi-level, cross-syndrome, developmental approach to studying 

disorders is needed.   

 

7.3 Individual differences 

Although a DS-specific phenotype has been described (see above), individual differences in 

DS are vast on all levels of description (genetic, cellular, brain, cognition, behaviour, social 

context; for examples, see Karmiloff-Smith et al., 2016). Large variability can already be 

detected early in development, including in the domains that at the group level have been 

identified as areas of relative difficulty. In the gross motor domain, while the average age of 

walking in TD children is 13 months and the age ranges from 9 to 17 months, most children 

with DS learn to walk between 18 and 36 months of age – with some DS children unable to 

walk even at 4 years of age (Palisano et al., 2001; see also Winders et al., 2019 for variability 

in motor development in DS). In the expressive language domain, in one longitudinal study 

of expressive vocabulary size in children with DS, the lowest-scoring child was nonverbal at 

36 months, while the expressive vocabulary size of the highest-scoring child was close to the 

normal range (243 words; Zampini & D’Odorico, 2009). When the same children were 
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assessed 6 months later, the nonverbal child remained nonverbal, while the child with the 

most developed language had doubled their expressive vocabulary size to nearly 500 words.  

The fact that large variability exists in DS raises the question of whether it is possible 

to identify a single DS-specific profile. In other words, to what extent can the classic DS 

profile be applied to all young children with DS, when the individual differences seem so 

vast? Indeed, Tsao and Kindelberger (2009) identified four distinct cognitive profiles for 

children with DS between 6 and 11 years of age. Subgroups seem to be possible to detect 

even in infants with DS. Fidler, Schworer, Prince, and colleagues (2019) observed visual, 

manual, and oral exploration in 9-month-old infants with DS and found that they could 

differentiate between two subgroups: ‘Active’ and ‘Passive’. Subgrouping with a wider range 

of domains in younger children with DS may therefore be a fruitful approach – albeit a 

challenging one, as it would require large sample sizes with children of similar chronological 

age, ideally followed longitudinaly at the same timepoints. 

Although individual differences are often averaged out in DS studies in order to 

‘extract’ general developmental mechanisms, the individual differences themselves afford a 

window onto these mechanisms. For example, on the genetic level, while variability in the 

genetic origin of DS has been proposed to contribute to variation in the phenotype (e.g., 

mosaicism; for a review, see Papavassiliou et al., 2015), the contribution of genetic 

background effects (i.e., all the genes that infants with DS inherit from their parents) has 

received less focus. Would a child’s genetic background have very little effect on the 

developmental path cleaved out by trisomy 21? Or can variation in this genetic background 

contribute to variation in the emerging DS phenotype? In older adults, variation in the 

apolipoprotein E (APOE) gene on chromosome 19 is related to variation in Alzheimer’s 

disease (AD), both in individuals with DS (who are already at high risk for AD) and in the 

general population (Prasher et al., 2008; van der Lee et al., 2018). Interestingly, the e4 allele 
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of APOE (APOE e4) that relates to increased AD risk later in life is associated with an 

attentional advantage in early development in DS (D’Souza, Mason, et al., 2020), potentially 

through variation in myelination (Dean et al., 2014). Can these small but early differences in 

attentional abilities constrain the emergence of higher-level functions such as language in DS 

(D’Souza, D’Souza, et al., 2017; Karmiloff-Smith, 1998)? Indeed, we found that infants and 

toddlers (either with or without DS) with better attentional abilities demonstrate better 

language abilities than those whose attentional abilities are worse (D’Souza, D’Souza, Jones, 

et al., 2020). These findings dovetail with the perspective that higher-level functions (like 

language) gradually emerge through manifold interactions across levels and developmental 

time (roughly, from variation in genes, through variation in attention, to variation in 

language6). Although these studies are correlational, when taken together they illustrate how 

individual differences might be an important focus of research. A mechanistic understanding 

of the within-syndrome heterogeneity may thus provide us with greater power to predict 

outcomes and tailor interventions to individuals. 

 

7.4 Getting the interventions right 

If we view the DS phenotype as an adaptive response to atypical constraints, and take into 

consideration the fact that its divergence from the typical path becomes increasingly 

pronounced over time, with increases in individual differences over time too, it becomes 

apparent that early interventions are likely to have the most impact. Therefore, rather than 

building interventions around later emerging relative strengths and weaknesses, a more useful 

strategy might be to alter constraints early in development to improve the child’s present and 

future quality of life. This does not mean that interventions should aim to steer the child back 

 
6 One might then expect to find a relationship between APOE e4 and language ability (for some suggestive 

analysis, see Thomas et al., 2020). 
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towards the typical path, a process that might be neither possible nor desirable. It means that 

interventions should alter constraints to ensure that the system does not adapt in ways that 

might make life more difficult later on. Because development is constrained by factors across 

many interconnected domains, the most successful interventions are likely to be the ones that 

target multiple domains simultaneously. 

 

7.4.1 Behavioural interventions: Early enough? Intense enough? 

The need for behavioural therapy programs to maximize developmental outcomes in infants 

with DS has been recognized across domains (e.g., speech and language therapy, 

physiotherapy, occupational therapy). It is crucial that these start early enough in 

development. For example, consider motor development, one of the earliest difficulties 

reported in DS. As we outlined above, motor abilities constrain how infants interact with 

their environment, and difficulties in this area may have cascading effects on other domains 

such as social and language development. Therefore, infants must be engaged early in 

actively moving their bodies to build muscle strength and minimize motor delay. This is 

likely to increase self-driven exploration. Although it is difficult to establish the frequency 

and intensity of therapy required to significantly improve muscle strength and motor control 

in infants with DS, from what is known about TD infants, self-driven practice is extensive in 

typical development, as toddlers produce around 14,000 steps per day (Adolph et al., 2012). 

Young children with DS will likely require even more repetitions considering their reduced 

neural plasticity. How could such high-intensity intervention be feasibly delivered to infants 

with DS? Due to limited resources, the most viable pathway for delivering high intensity 

therapy is through engaging the caregivers. Ulrich and colleagues implemented this approach 

in a series of studies using a portable paediatric treadmill (Fig. 4a) to develop trunk and leg 

control and strength in DS. Caregivers held their infants upright on a mini-treadmill for 8 
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minutes a day, 5 days a week. This amounted to an upper limit of about 960 steps per training 

session. This may be well short of the amount of activity spontaneously generated by TD 

children, yet, this intervention was shown to reduce delay in walking onset in DS by an 

average of 3 months (Ulrich, 2010; Ulrich et al., 2001). A more individually tailored version 

of this intervention, with the addition of small weights, led to even greater gains, bringing 

forward walking onset by 5 months (Angulo-Barroso et al., 2008; Ulrich et al., 2008). 

Although this may not seem much from the perspective of adult timescales, walking provides 

children with a very different set of experiences (Karasik et al., 2014), and every month spent 

not walking affects how the infant with DS interacts with the world, which may have 

cascading effects on other developing domains and alter the child’s developmental trajectory 

(Yamauchi et al., 2019).  

 

 

Figure 4. (a) Infant stepping during treadmill training. Photo provided by D. A. Ulrich. (b) Modified ride-
on car which ‘grows’ with the child. Adapted from Hospodar et al. (2020). Image credits: (a) D. A. 
Ulrich; (b) reproduced by permission of Taylor & Francis. 

  

As the treadmill intervention demonstrated, therapies that are tailored to the needs of 

the individual seem to provide the largest effect. In the motor domain, a number of possible 

interventions have been developed which can be applied to different developmental stages, 

scaffolding development one step at a time. These include ‘Tummy Time’ (Wentz, 2017), 

‘Kick and Drive Gym’ (Lloyd & Ulrich, 2006), ‘sticky mittens’ (Libertus et al., 2015; but cf. 

Corbetta et al., 2016), ‘Playskin Lift’ (Lobo et al., 2016), and ‘Go Baby Go’ (Hospodar et al., 

2021; Logan et al., 2017). When appropriate, a combination of these interventions may 
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facilitate outcomes. For example, the treadmill may enable infants with DS to achieve a 

number of steps, or the type of step, they would not otherwise be able to self-generate, but it 

does not provide aspects of locomotion such as visual flow or the experience of reaching new 

people and objects. This is something that ‘Go Baby Go’, a modified ride-on car, can 

provide. As the child grows, the car can be adjusted to ‘grow’ with them, from seated, to 

standing, to walking (see Fig. 4b). This provides an experience that would be enjoyable and 

sufficiently challenging for the child to self-generate locomotion but not too challenging that 

it becomes discouraging. Therefore, a combined intervention utilising both the motorized 

treadmill and self-generated ride-on car might enhance intervention gains. 

It may also be advantageous to combine different types of interventions across 

domains. For example, as we discussed earlier in this chapter, motor activity is embedded in 

social interaction. Indeed, Ulrich (2010) notes that parents often reported enjoying treadmill 

intervention time, as it provided them with ‘face time’ to spend in interaction with their 

infants. Therefore, as long as it is not too demanding on the child, one approach might be to 

integrate movement therapy with other types of therapies (e.g., speech and language therapy), 

rather than targeting each domain in separate sessions.  

 

7.4.2 Ready for pharmacological interventions? 

The principle of behavioural intervention is to capitalise on brain plasticity by increasing 

stimulation. However, as noted above, plasticity itself is reduced in infants with DS. 

Therefore, preclinical research has often focused on identifying pharmacological targets for 

altering neural constraints (for a review, see the collection edited by Dierssen, 2020). 

However, translating preclinical research to human clinical trials presents some serious 

challenges (Lee et al., 2020; Zhu et al., 2019). One of them involves a lack of available tools 

that can accurately measure intervention-related changes across domains in individuals with 
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DS (d’Ardhuy et al., 2015; Hedge et al., 2018). This is especially the case for studies 

involving infants and young children (D’Souza et al., 2021; Lee et al., 2020). Yet, obtaining 

accurate measurements across domains is crucial, as some pharmacological interventions 

(e.g., fluoxetine) have been suggested even for foetuses with DS (Bartesaghi et al., 2015; 

Guedj et al., 2014; Guidi et al., 2014; for an ethical discussion, see de Wert et al., 2017).7 As 

discussed above, because the developing system is highly interconnected, altering the 

chemical properties of one part may have unpredictable and widespread effects on the entire 

system. For example, it has been suggested that SSRI medications, which include fluoxetine, 

may have detrimental effects in pregnancy, including increased risk of heart defects, brain 

and craniofacial abnormalities, neonatal seizures, and changes in neurodevelopment and 

behaviour (for review, see Ortega-Alves & Urato, 2016). Therefore, high quality outcome 

measures are needed both to capture domains in which gains would be expected (such as 

improved learning) and to reliably measure any negative effects a pharmacological 

intervention may have.  

 

8 Conclusions 

Compared to many other neurodevelopmental disorders, DS is often diagnosed—and 

therefore can be studied—very early in development. This provides us with a unique window 

onto early developmental processes. Rather than describing DS as a static assemblage of 

relative strength and difficulties, we have emphasized the importance of viewing DS as an 

adaptive system with a different start state (i.e., trisomy 21). We have argued that trisomy 21 

has cascading effects on the adapting system, such as how it processes information and 

explores the environment. This may in turn lead to adaptations such as over-reliance on social 

 
7 A pilot feasibility trial of perinatal fluoxetine treatment at the University of Texas was proposed in 2014 (as 

mentioned in Martínez Cué & Dierssen, 2020) but has yet to share any findings.  
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agents. These adaptations may be useful in the short term, but they are likely to constrain the 

emergence of functions later in development. Taking a developmental perspective may 

therefore help us to understand how the DS phenotype emerges, and what the best 

intervention approaches are likely to be.  
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